A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice.

نویسندگان

  • Bin-Bin Jiao
  • Jian-Jun Wang
  • Xu-Dong Zhu
  • Long-Jun Zeng
  • Qun Li
  • Zu-Hua He
چکیده

Leaf senescence, a type of programmed cell death (PCD) characterized by chlorophyll degradation, is important to plant growth and crop productivity. It emerges that autophagy is involved in chloroplast degradation during leaf senescence. However, the molecular mechanism(s) involved in the process is not well understood. In this study, the genetic and physiological characteristics of the rice rls1 (rapid leaf senescence 1) mutant were identified. The rls1 mutant developed small, yellow-brown lesions resembling disease scattered over the whole surfaces of leaves that displayed earlier senescence than those of wild-type plants. The rapid loss of chlorophyll content during senescence was the main cause of accelerated leaf senescence in rls1. Microscopic observation indicated that PCD was misregulated, probably resulting in the accelerated degradation of chloroplasts in rls1 leaves. Map-based cloning of the RLS1 gene revealed that it encodes a previously uncharacterized NB (nucleotide-binding site)-containing protein with an ARM (armadillo) domain at the carboxyl terminus. Consistent with its involvement in leaf senescence, RLS1 was up-regulated during dark-induced leaf senescence and down-regulated by cytokinin. Intriguingly, constitutive expression of RLS1 also slightly accelerated leaf senescence with decreased chlorophyll content in transgenic rice plants. Our study identified a previously uncharacterized NB-ARM protein involved in PCD during plant growth and development, providing a unique tool for dissecting possible autophagy-mediated PCD during senescence in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence.

Chlorophyll degradation is an aspect of leaf senescence, which is an active process to salvage nutrients from old tissues. non-yellow coloring1 (nyc1) is a rice (Oryza sativa) stay-green mutant in which chlorophyll degradation during senescence is impaired. Pigment analysis revealed that degradation of not only chlorophylls but also light-harvesting complex II (LHCII)-bound carotenoids was repr...

متن کامل

Senescence-Associated Vacuoles, a Specific Lytic Compartment for Degradation of Chloroplast Proteins?

Degradation of chloroplasts and chloroplast components is a distinctive feature of leaf senescence. In spite of its importance in the nutrient economy of plants, knowledge about the mechanism(s) involved in the breakdown of chloroplast proteins is incomplete. A novel class of vacuoles, "senescence-associated vacuoles" (SAVs), characterized by intense proteolytic activity appear during senescenc...

متن کامل

The senescence-induced staygreen protein regulates chlorophyll degradation.

Loss of green color in leaves results from chlorophyll (Chl) degradation in chloroplasts, but little is known about how Chl catabolism is regulated throughout leaf development. Using the staygreen (sgr) mutant in rice (Oryza sativa), which maintains greenness during leaf senescence, we identified Sgr, a senescence-associated gene encoding a novel chloroplast protein. Transgenic rice overexpress...

متن کامل

In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.

Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, sugg...

متن کامل

Identification of novel genes expressed in Brassica napus during leaf senescence and in response to oxidative stress

Senescence is a genetically regulated oxidative process that involves a general degradation of cellular structures and enzymes and the mobilization of the products of degradation to other parts of the plant. The cDNA-AFLP (cDNA-Amplified Fragment Length Polymorphism) analysis has been used under stringent PCR conditions afforded by ligation of adapters to restriction fragments, and the use of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2012